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Abstract: Interest in non-linear time series models has increased dramatically in recent years. Regime switching
models such as the Smooth Transition Autoregressive (STAR) Model and the Markov Switching Model have been
the most popular in the class of non-linear models. The lack of established structural and statistical properties of
these models has prevented a formal evaluation of their adequacy and validity. An alternative empirical strategy
is to evaluate different models based on their forecast performance. This paper discusses several issues regarding
the forecast performance of the STAR-Generalised Autoregressive Conditional Heteroscedasticity (GARCH), or
STAR-GARCH model, and the STAR-Smooth Transition GARCH (or STAR-STGARCH) model. The forecast
performance of each model is evaluated for two important stock indexes, namely Standard and Poor’s Composite
500 Index and the Hang Seng Index, using two different forecasting criteria. An emphasis is placed on the
importance of obtaining structural and statistical properties of the models, which have generally been ignored in
the literature. Moreover, issues regarding the choice of an appropriate algorithm for maximising the likelihood
function are also discussed. It is shown that different algorithms can produce different parameter estimates
for similar likelihood values. Moreover, different parameter estimates lead to different forecasts and different
forecasting performance. A simple trimming method designed to reduce the effects of extreme observations and
outliers is used to evaluate the effects of these observations on forecast performance.
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1 INTRODUCTION ing to two different criteria, namely Mean Square
Error (MSE) and Mean Absolute Error (MAE).
Interest in non-linear time series models has in-
creased dramatically over the past decade, with the
Smooth Transition Autoregressive (STAR) Model
and the Markov Switching (MSW) Model being
the most popular. Combining various STAR-type
models with Bollerslev’s [1986] Generalised Autore-

The paper addresses important empirical issues re-
garding the Maximum Likelihood Estimators (MLE)
of STAR-type models. Specifically, the paper
presents empirical evidence which shows that the
MLE is sensitive to the choice of algorithm for max-

gressive Conditional Heteroscedasticity (GARCH)
model has now become established in the financial
volatility literature. This combination has resulted
in two highly flexible non-linear models of finan-
cial volatility, namely STAR-GARCH and STAR-
Smooth Transition GARCH (STAR-STGARCH)
models (see van Dijk et al. [2000] and Lundburgh
and Terdsvirta [2000] for recent developments of
STAR models).

Despite their flexibility, the structural and statis-
tical properties of these models are essentially un-
known, which prevents a reliable evaluation of their
adequacy and validity. An alternative empirical ap-
proach is to evaluate their forecast performance.
This paper evaluates the forecast performance of
six different STAR-type models using the returns of
two important stock indexes, namely Standard and
Poor’s 500 Composite Index and the Hang Seng In-
dex. The out-of-sample forecast is evaluated accord-

imising the likelihood function, but that the like-
lihood values may remain essentially unchanged.
More importantly, model selection based on forecast
performance may be sensitive to the algorithm cho-
sen to estimate the models, which raises issues re-
garding the validity and reliability of MLE for such
models.

Furthermore, reducing the magnitudes of extreme
observations and outliers within the sample may
be ineffective for improving the out-of-sample fore-
cast. Indeed, in some cases, such transformations
can worsen the forecast performance of individual
models. The paper presents empirical evidence to
support these claims.

The structure of the paper is as follows. Section 2
discusses some issues relating to STAR-type mod-
els. Information on the data and the methodology
adopted in the paper are given in section 3. Empir-
ical results are presented in section 4, and section 5
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provides some concluding remarks.

2 MODELS

A simple first-order STAR model with two
regimes is defined as follows:

vt =(d11 + d129e-1) (1 — G(84;7, )+
(21 + P22ye—1)G (8157, ¢) + €t

where G(8;;7,¢) is the transition function, assumed
to be twice differentiable and bounded between 0 and
1, v is the transition rate, and c is the threshold
value. Although there are few theoretical results re-
garding the stationarity of the STAR model, a suf-
ficient condition is ¢;; < 1 Vi,j (see van Dijk et al.
[2001] for further discussion). The transition vari-
able, s, is usually (but not always) defined as a lin-
ear combination of the lagged values of y;, namely

k
8t = Zaiyt—i-

i=1

The STAR model was proposed by Terdsvirta [1994]
as an extension of Tong [1978]. Lundbergh and
Terésvirta [2000] extended the STAR model by spec-
ifying the error term to follow a GARCH(p, q) pro-
cess, as defined in Bollerslev [1986]:

£t = "It\/h_ta
P q
h=w+ Za,-sf_,- + Zﬂjht_j.
i=1

j=1

Sufficient conditions for h; > 0 arew > 0, o; > 0
Vi=1,.,p,and B; >20Vji=1,.,q.

Lundbergh and Terisvirta [2000] extended the model
further by incorporating the concept of smooth tran-
sition into the GARCH component, namely the
STAR-STGARCH model:

P q
he =(w1 + Z al,-ef_,- + Eﬂliht—i) X

i=1 i=1

(1 - H(Fﬁ& d))+
4 q
(w2 + Z agie;_; + Z Baihi_i)x
i=1 i=1
H(pt;E:d)a

-where H(p;;&,d) satisfies the same conditions as
G(8¢;7,¢), £ is the transition rate, and d is the
threshold value. Regarding the choice of transition
function, the two most widely used in the literature
are the first-order logistic function

1

9 > 0,
1+ exp(—7(s: — ¢)) 7

L(st;”/’ c) =

and the first-order exponential function

E(st;v,¢) = 1 —exp(—y(s; — ©)?), 720

STAR models with logistic transition functions are
denoted Logistic STAR (or LSTAR) models, while
STAR models with Exponential transition functions
are denoted Exponential STAR (or ESTAR) models.

The models considered in this paper are as follows:

1. Autoregressive (AR(1))-GARCH (AR)
2. Logistic STAR - GARCH (LSTAR)
3. Exponential STAR - GARCH (ESTAR)

4. Logistic STAR - Logistic Smooth Transition
GARCH (LSTARLSTG)

5. Exponential STAR - Exponential Smooth
Transition GARCH (ESTARESTG)

6. Logistic STAR - Exponential Smooth Transi-
tion GARCH (LSTARESTG)

7. Exponential STAR - Logistic Smooth Transi-
tion GARCH (ESTARLSTG).

Unless otherwise stated, all the estimated STAR-
type models have two regimes, and each follows an
AR(1) process with s; = yi—1. Moreover, & is
assumed to follow a GARCH(1,1) process and, in
the case of Smooth Transition GARCH-type models,

Pt =&¢-1-
3 DATA AND METHODOLOGY

3.1 Data

The returns of two stock indexes are used to
estimate all the models given above, namely Stan-
dard and Poor’s Composite 500 Index (S&P) and
the Hang Seng Index (HS). Returns on these indexes
are calculated as follows:

Y, -Y

Re= =5~

Data are obtained from the DataStream database
service, with the sample period 1/1/1986 to
1/4/2000, giving a total of 3726 data points for each
index. The first 3226 data points are used for estima-
tion, leaving the last 500 data points for evaluating
the one-day ahead out-of-sample forecasts.
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3.2 Methodology

Each of the seven models is estimated twice by
applying two different algorithms to maximise their
log-likelihood functions. The effects of algorithmic
choice on model forecast performance can be investi-
gated by comparing the out-of-sample forecast per-
formance based on the two sets of estimates.

Two forecasting criteria are calculated for the pur-
pose of comparison, namely Mean Square Error
(MSE) and Mean Absolute Error (MAE). Forecast
performance between models estimated by the same
algorithm are compared, then a comparison is made
between the best models from each algorithm.

The algorithms used in this paper are the New-
ton and Broyden-Fletcher-Goldfarb-Shanno (BFGS)
methods. There are two main reasons for choos-
ing these algorithms. First, they belong to two
different classes of optimisation algorithms, namely
Newton and Quasi-Newton. The difference between
these two classes is that Newton requires the use of
the analytical Hessian matrix of the objective func-
tion, which is often costly and time consuming to
compute. Quasi-Newton requires only the numeri-
cal approximation of the Hessian matrix, which can
be obtained efficiently by methods such as finite-
differences. The results can be unreliable if the
approximation of the Hessian matrix is inaccurate.
Moreover, the covariance matrix, which is typically
estimated as the inverse of the Hessian matrix, can
also be affected, so that inferences may be similarly
affected.

Second, these two algorithms are the most popu-
lar algorithms among other optimisation algorithms
in their respective classes. Most computer software
packages, such as GAUSS and MatLab, contain op-
tions for both algorithms.

As noted in van Dijk et al. [2000] and Brooks, Burke
and Persands [2001], the estimation of the MLE for
GARCH and STAR-type models appears to be sen-
sitive to the choice of initial values. For this reason,
all the models estimated in this paper used the same
initial values.

A simple trimming algorithm was implemented to
examine the effects of extreme observations and out-
liers on the forecast performance of each model.

The algorithm can be summarised as follows:
1. Calculate the standard deviation for the sam-
ple.

2. If an observation is 4 times larger than the
standard deviation, it is reduced to 4 times the
standard deviation.

3. If an observation is between 3 and 4 times the
standard deviation, it is reduced to 3 times the
standard deviation.

4. If an observation is between 2.5 and 3 times the

standard deviation, it is reduced to 2.5 times
the standard deviation.

5. Repeat steps 1 to 4 above for every observation
in the sample.

4 EMPIRICAL RESULTS

4.1 Estimates

The two algorithms seemed to produce the same
estimates for the simple AR(1)-GARCH(1,1) model,
but the estimates of STAR-type models differed sub-
stantially. As shown in Table 1, Newton estimates
of the STAR-GARCH models differed substantially
from BFGS estimates in the conditional mean, but
not in the conditional variance. This reflects the
block diagonal nature of the information matrix.

As the information matrices of STAR-STGARCH
models are generally not block diagonal, it is not
surprising to find that the BFGS estimates differed
substantially from Newton estimates in both the con-
ditional mean and the conditional variance, as given
in Table 2.

Although the estimates obtained from using different
algorithms can be substantially different, their log-
likelihood values remain similar, and in some cases
are identical. This suggests that the likelihood func-
tions of these models are flat, as suggested in van
Dijk et al. [2000].

The following implications follow from the estimates:

1. If the MLE is sensitive to the choice of al-
gorithm, it is possible to obtain two different
interpretations for the same model using the
same data set. This is worrying because the
interpretation of the empirical models should
be independent of the method of estimation.

2. Differences in estimates can lead to a situation
whereby BFGS estimates satisfy various regu-
larity conditions (such as stationarity, ergod-
icity, consistency and asymptotic normality),
while Newton estimates satisfy only some or
none of these conditions, and vice-versa.

3. Stationarity may be of concern because the es-
timated coefficients of the lagged dependent
variable often exceed one. However, there are
presently no theoretical results regarding the

" stationarity of STAR-type models, so it is un-
clear whether the estimated models are sta-
tionary (see van Dijk et al. [2000] for further
discussion regarding the stationarity of STAR-
type models).

4. There are two plausible explanations for the
differences in estimates obtained by the two al-
gorithms, namely that (Q)MLE is not an ap-
propriate estimator for these models, or that
the optimisation algorithms are inappropriate.
It is difficult to determine the specific cause
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without understanding the structural and sta-
tistical properties of these models. Thus, a
deeper understanding of these properties is cru-
cial for applying these models sensibly.

4.2 Forecast Performance

Similar likelihood values might suggest that these
models are likely to produce similar forecast perfor-
mance. Although this is true to some extent, model
selection based on forecast performance seems to be
sensitive to the choice of optimisation algorithms.
Table 3 provides the list of models that produced the
best forecasts based on two different criteria, namely
Mean Square Error (MSE) and Mean Absolute Error
(MAE).

Denote MSE(BFGS) as MSE from models estimated
by BFGS, and MAE(Newton) as MAE from models
estimated by Newton. According to MSE(BFGS),
the best model to forecast S&P returns is LSTAR.
However, the forecast performance based on models
estimated by Newton suggests that ESTARESTG is
optimal. Similar observations are obtained for ad-
justed S&P and adjusted Hang Seng. ESTARLSTG
appears to be superior for the adjusted S&P ac-
cording to MSE(BFGS), but MSE(Newton) suggests
that LSTARLSTG produces the smallest forecast er-
ror. A similar conclusion holds for MAE. LSTAR
produces the minimum MAE(BFGS) for S&P, but
ESTARESTG is marginally superior according to
MAE(Newton). In fact, given the same algorithm,
both forecast criteria seem to select the same model
for the mean.

This outcome does not hold for the variance. Accord-
ing to MSE(BFGS), a simple GARCH model seems
to be best for predicting volatility for S&P, adjusted
S&P and Hang Seng. However, this is not supported
by MAE(BFGS). It is well known that MSE penalises
large errors, so there is a temptation to conclude that
GARCH(1,1) captures outliers and extreme observa-
tions better than do STAR-type models. This is not
necessarily the case, as it is not clear whether these
models are correctly specified. Since there is no the-
oretical result regarding the effects of misspecifica-
tion on the MLE of STAR-type models, their ability
to accommodate extreme observations and outliers
is unclear. It is also worth noting that the exist-
ing specification tests for STAR-type models rely on
several rather restrictive assumptions, such as nor-
mality, stationarity and the existence of the necess-
ary moments (see Lundbergh and Terédsvirta [1999]
.and van Dijk et al. [2000] for informal derivations
of these tests). As the regularity conditions necess-
ary for a formal derviation of these tests are still
unknown, the validity and reliability of these tests
remain questionable.

An interesting observation from table 3 is that the
best model for the mean (return) is not necessarily
the best model for the variance (volatility). Indeed,
in most cases, the best model for the mean is, in fact,
different from that for the variance. This interesting
pattern may reflect the fact that:

1. models are inadequate or misspecified;
2. MLE is not robust for these models;

3. there is a trade-off between power in predictin,
the mean and variance. :

Table 4 contains the differences in forecast errors be-
tween models estimated using BFGS and Newton.
It is interesting to note that Newton estimates for
LSTARESTG seem to perform worse in forecasting
volatility than BFGS estimates. It is also interesting
and comforting to note that GARCH appears to be
robust and invariant to the choice of optimisation al-
gorithm, though it is sensitive to initial conditions,
as noted above.

It is not clear which algorithm is likely to produce
estimates that minimise the forecast errors. Interest-
ingly, Newton seems to produce superior estimates
for predicting the mean according to Table 3, but
it is unclear which algorithm produces superior esti-
mates for predicting volatility.

4.3 Effects of Extreme Observations
and Outliers

Another interesting observation from the results
is that symmetric trimming of outliers and extreme
observations does not seem to improve forecast per-
formance. In most cases, forecast performance ap-
pears to be worse after such adjustment. However,
this conclusion is based on the assumption that these
models are correctly specified. As the effects of mis-
specification of non-linear time series models are gen-
erally unknown, it is difficult to draw strong conclu-
sions about the effects of outliers and extreme ob-
servations on the MLE of STAR-type models. It is
clear, however, that outliers and extreme observa-
tions should be handled with caution. Simple sym-
metric trimming algorithms may not reduce the ef-
fects of extreme observations and outliers in non-
linear models, and they do not necessarily improve
out-of-sample forecast performance. If the underly-
ing distribution of the process is asymrmetric, then
symmetric trimming may induce biased estimates.
Moreover, if the sample used for forecasting con-
tains an excessive number of extreme observations
and outliers, it would not be surprising for the esti-
mated models based on the adjusted data to perform
poorly.
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Table 1: STAR-GARCH estimates

- S&P(LSTAR) @11 12 a1 922 ¥ & @ &
Newton 0.0431  -2,1097 -0.0420 2.2661 1.6996 0.0016 1.3793e-6 0.0782 0.9095
BFGS -0.0341 -2.7766 0.0389 3.0998 1.2579 0.0788 1.3807e-6  0.0782  0.9095
HS(ESTAR) ¢11 ¢12 $21 P2z ¥ é @ &
Newton -0.3415 -1.3078 0.2538 -0.3164 3.4741 -0.4967 8.136e-6 0.1626 0.8201
BFGS -0.1516 -2.8288 0.0089 -0.0701 217.7126 -0.1183 8.7847e¢-6 (0.1511 0.8205
Table 2: STAR-STGARCH estimates
S&P(LSTARESTG)
Newton 11 P12 21 P22 ¥ [ ufy ai1 Bu
-0.2826 -0.2860 0.0021 0.0338 2.2733 -2.3266 1.4137e-6 0.0799 0.9069
uiz a2 B2 £ d
0.006196 0.1566 0.1098 3.2164 3.0245
BFGS 3% P12 on 22 7 é Wy aj1 Bu1
52.8016 57.1852 -2.1135 3.8145 2.8685 -1.1218 B8.0038¢e-6 0.1627 0.8197
) a3y B21 13 d
1.3800e-6 0.07817  0.9095 3.0930 2.9143
HS(LSTARLSTG)
Newton 11 12 d21 ¢22 ¥ é w1 aix Bu
0.8093 -3.2471 -0.0034 0.1961 8.6617 -0.5962 8.2113e-6 0.1635 0.8190
i a3 B £ d
8.2302e-6 0.1190 0.8312 3.0935 2.9147
BFGS $11 P12 ¢21 22 v é W1 ai1 Bu1
-0.0390 -0.9386 0.0304 -0.5178 55.0001 -0.0056 2.676e-5 0.5298 0.8268
Wz a3y Bn £ d
9.7314e-9  0.02056 0 0.0274  -32.9896

Table 3: Forecasting under different criteria and error measurements’

Mean MSE MAE
BFGS NEWTON BFGS NEWTON
S&P LSTAR ESTARESTG LSTAR ESTARESTG
Adjusted S&P | ESTARLSTG LSTARLSTG | ESTARLSTG LSTARLSTG
HS AR AR AR AR
Adjusted HS | ESTARESTG LSTAR ESTARESTG AR
Variance MSE MAE
BFGS NEWTON BFGS NEWTON
S&P AR LSTARLSTG AR AR
Adjusted S&P AR ESTARLSTG LSTAR LSTARLSTG
HS AR AR ESTARLSTG AR
Adjusted HS | ESTARESTG LSTAR ESTARLSTG LSTAR

1The better model from using the two algorithms is given in bold letters.
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Table 4: Differences in forecast errors between algorithms

Mean MSE
AR LSTAR ESTAR LSTARLSTG LSTARESTG ESTARESTG ESTARLSTG
S&P 0.000E+00 -1.800E-09 -1.657E-04 -1.150E-06 6.480E-08 1.770E-07 -1.240E-06
Adjusted S&P | 0.000E+00 -2.310E-08 1.100E-09 5.116E-07 1.777TE-04 9.087E-05 -3.963E-06
HS 0.000E+-00 8.038E-06 1.861E-05 1.989E-05 -1.748E-07 -1.996E-07 2.040E-05
Adjusted HS 0.000E+00 1.492E-05 7.704E-07 -2.161E-05 -2.154E-05 -3.565E-05 8.908E-07
Mean MAE
AR LSTAR ESTAR LSTARLSTG LSTARESTG ESTARESTG ESTARLSTG
S&P 0.0000E+00 -6.7200E-07 -9.5685E-03 -1.7665E-05 2.1680E-06 8.4470E-06 -2.5399E-05
Adjusted S&P | 0.0000E4+00 -5.6700E-07 -1.7010E-06 1.1326E-05 5.3831E-04 3.7000E-04 -9.1308E-05
HS 0.0000E4+00  9.0270E-05 1.5117E-04 2.2513E-04 -9.2000E-06 -1.4410E-05 1.6277E-04
Adjusted HS 0.0000E4+00  B.6460E-05 6.9200E-06 -3.2906E-04 -3.2798E-04 -4.7782E-04 6.3400E-06
Variance MSE
AR LSTAR ESTAR LSTARLSTG LSTARESTG ESTARESTG ESTARLSTG
S&P 0.0000E+-00 8.7100E-12 -9.6724E-08 2.0260E-08 -2.1730E-11 6.5327E-09 -1.1445E-08
Adjusted S&P | 0.0000E4+00  5.4000E-12 1.9600E-11 3.2613E-08 -9.2282E-04 -9.2426E-04 1.7432E-08
HS 0.0000E+00  9.7587E-09 1.2381E-08 9.6747E-08 -5.4980E-10 -2.3140E-09 6.1286E-08
Adjusted HS 0.0000E400 6.5456E-09 5.0020E-10 -1.4726E-09 -1.4972E-09 -1.4131E-08 -1.1816E-08
Variance MAE
AR LSTAR ESTAR LSTARLSTG LSTARESTG ESTARESTG ESTARLSTG
S&P 0.0000E+00 1.6100E-08 -1.6149E-04 6.7180E-05 -2.9300E-08 4.3186E-05 -1.8195E-05
Adjusted S&P | 0.0000E4+00 -7.3000E-09  2.4700E-08 1.0135E-04 -2.7014E-02 -2.7099E-02 6.9709E-05
HS 0.0000E4+00 -4.323BE-06  6.2320E-07 -6.9701E-05 -2.4160E-07 -1.0795E-06 -8.6589E-05
Adjusted HS 0.0000E+00  6.7106E-06 3.7370E-07 -7.7246E-06 -7.7509E-06 -1.5697E-05 -2.0927E-05

5 CONCLUSION

Forecast performance based on the MLE of a simple
GARCH model and six different STAR-type models has been
evaluated. This paper has presented empirical evidence to
show that MLE is sensitive to the choice of optimisation algo-
rithm, so that model selection based on forecast performance
may be affected. Ideally, it would be desirable to estimate
these models using several different algorithms and to eval-
uate their forecast performance. It would appear that some
algorithms are more appropriate than others, and it is difficult
to select the most appropriate and efficient algorithm without
an adequate understanding of the structure of the likelihood
functions.

Another important empirical finding is that the best model
for the mean is not necessarily that for the variance. These
findings raise serious issues regarding the robustness and reli-
ability of MLE for STAR-type models.

The problems raised above emphasize the importance of ob-
taining structural and statistical properties of STAR-type
models and their likelihood functions, and would seem to be
crucial in order to apply the models correctly. Other impor-
tant issues, such as the effects of misspecification on MLE,
should be investigated further for purposes of determining the
validity and reliability of such models for practical purposes.
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